Calculate the derivatives

Exercises-III
Exercise 1
Calculate the derivatives of the following functions:
1. y =
tg x – 1
sec x
: Ans. y0 = sin x + cos x
2. y = log r1 + sin 1 – sin x x: Ans. y0 = cos 1 x
3. y = log tg π4 + x2 : Ans. y0 = cos 1 x 4. f(x) = sin(log x): Ans. f0(x) = cos(log x x)
5. f(x) = tg(log x): Ans. f0(x) = sec2(log x)
x
6. y = log 1 + x
1 – x
. Ans. y0 = 2
1 – x2
7. y = log 1 + x2
1 – x2 : Ans. y0 = 1 -4xx4 8. y = log x2 + x : Ans. y0 = 2 xx2 ++ 1 x
9. y = log x3 – 2x + 5 : Ans. y0 = 3×2 – 2
x3 – 2x + 5
10. y = x log x: Ans. y0 = log x + 1
11. y = log(x + p1 + x2): Ans. y0 = p1 + 1 x2
12. y = log(log x): Ans. y0 = 1
x log x
13. f(x) = log r1 + 1 – x x. Ans. f0(x) = 1 -1×2
14. f(x) = log
px2 + 1 – x
px2 + 1 + x. Ans. f0(x) = -p1 + 2 x2
15. y = pa2 + x2 – a log a + pa2 + x2
x
. Ans. y0 =
pa2 + x2
x
16. y = log(x – px2 + a2) –
px2 + a2
x
. Ans. y0 =
px2 + a2
x2
17. y = –
cos x
2 sin2 x +
1 2
log tg x
2
: Ans. y0 = 1
sin3 x 18. y =
1 2
tg2 x+ log cos x: Ans. y0 = tg3 x
19. y = e4x+5. Ans. y0 = 4e4x+5 20. y = 7×2+2x: Ans. y0 = 2(x + 1)7×2+2x log
21. y = aepx. Ans. y0 = a
2pxe
px 22. y = ex 1 – x2 : Ans. y0 = ex 1 – 2x – x2
23. y =
ex – 1
ex + 1
: Ans. y0 = 2ex
(ex + 1)2 24. y = a2 exa – e- xa : Ans. y0 = 1 2 exa + e- xa
25. y = ecos x sin x: Ans. y0 = ecos x cos x – sin2 x
26. y = xnesin x. Ans. y0 = xn-1esin x(n + x cos x)
27. y = tg
1 – ex
1 + ex
: Ans. y0 = – 2ex
(1 + ex)2 ·
1
cos2 1 – ex
1 + ex
28. y = sin p1 – 2x . Ans. y0 = -cos p1 – 2x
2p1 – 2x 2x log 2
Exercise 2
Find the derivatives of the following functions: (try to use the logarithmic differentiation when it is possible):
1. y = s3 x(xx-2 + 1 1)2 . Ans. y0 = 1 3 s3 x(xx-2 + 1 1)2 x1 + x22+ 1 x – x -2 1
2. y =
(x + 1)3p4 (x – 2)3
p5 (x – 3)2 : Ans. y0 = (x + 1) p5 (3xp4-(x3)-2 2)3 × x + 1 3 + 4(x3- 2) – 5(x2- 3)
3. y =
(x + 1)2
(x + 2)3(x + 3)4 : Ans. y0 = -(x + 1) (x + 2) 5×42(+ 14 x + 3) x 5+ 5
4. y =
p5 (x – 1)2
p4 (x – 2)3p3 (x – 3)7 : Ans. y0 = 60p5 (x–161 1)3xp24 + 480 (x – 2) x -7p3271 (x – 3)10
5. y =
x 1 + x2
p1 – x2 : Ans. y0 = 1 + 3 (1 -x2x-2)23 2×4
6. y = x5(a + 3x)3(a – 2x)2. Ans. y0 = 5×4(a + 3x)2(a – 2x) a2 + 2ax – 12×2
7. y = arcsin
x a
: Ans. y0 = pa21- x2
8. y = (arcsin x)2: Ans. y0 = 2 arcsin p1 – x2x
9. y = cot x2 + 1 : Ans. y0 = 2x
1 + (x2 + 1)2 10. y = cot
2x
1 – x2 : Ans. y0 = 1 +2×2
11. y = arccos x2 : Ans. y0 = p1–2xx4 12. y = arccos x x: Ans. y0 = -(x + px21p-1 x-2xarccos 2 x)
13. y = arcsin
x + 1

p2 : Ans. y0 = p1 – 21x – x2

2
14. y = xpa2 – x2 + a2 arcsin x
a
. Ans. y0 = 2pa2 – x2
15. y = pa2 – x2 + a arc sin x
a
. Ans. y0 = ra a – + x x
16. f(x) = arccos(log x): Ans. f0(x) = – 1
xp1 – log2 x
17. y = cot r1 1 + cos – cos x x(0 6 x < π): Ans. y0 = 1 2
18. y = cot
ex – e-x
2
: Ans. y0 = 2
ex + e-x
19. y = xarcsin x. Ans. y0 = xarcsin x arcsin x x + plog 1 -xx2
20. y = log 1 + 1 – xx
14

1 2
cot x: Ans. y0 = x2
1 – x4
21. y = log 1 + xp2 + x2
1 – xp2 + x2 + 2 cot
xp2
1 – x2 : Ans. y0 = 1 + 4px24
22. y = arccos
x2n – 1
x2n + 1: Ans. y0 = -x (2xn2jnx+ 1) jn
3

The post Calculate the derivatives appeared first on My Assignment Online.

Do you need any assistance with this question?
Send us your paper details now
We'll find the best professional writer for you!

WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!
? Hi, how can I help?